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LETTER TO THE EDITOR 

Critical behaviour of a forest fire model with immune trees 

Ezequiel V Albano 
lnstitum de Investigxiones Wsicoquimicas Tedricas y Aplicadas, (INIFTA). Facultad de 
Ciendas Exactas, Universidad Nacional de La Plata, SUC 4, Casilla de Como 16, (1900) La 
Plate, Argentina 

Received 10 October 1994 

Abstract. A delailed shldy of the critical, subcritical and supercritical behaviour of a forest 
fire model with h m u n e  Mes is presented and it is demonstrated that the model belongs to 
the same universality class as Reggeon held theory. Consequently, problems emerging from 
(apparently) unrelated branches of science such as particle physics, catalysis, directed percolation 
and epidemic spreading can be understood by means of a unified description. 

Irreversible dynamical systems are relevant to a wide range of phenomena in physics, 
chemistry, biology, ecology, etc. Within this context, forest fire models, introduced to 
describe the spreading of an epidemic disease [ 1,2], have, very recently, become the focus 
of increasing interest [3-IO]. Forest fire models are defined on &dimensional hypercubic 
lattices of linear size L .  Each lattice site is either empty, a green tree or a burning tree. At 
each time step, the system is updated in parallel according to the following rules. 

(i) A burning tree becomes an empty site. 
(ii) Trees grow with probability p from empty sites. 
(iu) A green tree becomes a burning tree with probability (1 - g) if at least one next 

neighbour is burning. 
(iv) A green tree becomes a burning tree with probability f << 1 if no neighbour is 

burning. 
Taking g = 0 in (iii) and neglecting rule (iv), one has the model of Bak et a1 [3] 

which is non-critical and exhibits a steady state, which is a succession of fire fronts with 
fractal dimension D = 1 [4]. A modification of this model is obtained by introducing the 
immunity g (g c 1 in (iii)) which is the probabilitylhat a tree is not ignited although one 
of its neighbours is burning [7]. This forest fire model with immune trees (mr) exhibits 
interesting fluctuating percolation behaviour [7]. Another model, proposed by Drossel er al 
[5], takes g = 0 in (iii) and, in the limit f << 1, f j p  + 0, shows self-organized critical 
(soc) behaviour in a non-conservative system [5.6,8,9]. In a recent variant of the forest 
fire model, which also exhibits Soc, it is asumed that sparks are dropped at random and if 
they fall on a tree, the whole cluster of sites connected to it bums [lo]. 

In this work, both the dynamic and static critical behaviour of the F F M ~  are analysed in 
detail and it is unambiguously demonstrated that this model belongs to the uncversality class 
of Reggeon field theory. This finding shows the formal equivalence between the FFMIT and 
other problems emerging from different disciplines, such as for example, quantum particle 
physics [ l l ,  121, directed percolation [13], irreversible catalytic systems [14,15], pair contact 
processes [16], branching annihilating random walkers [17], etc. 
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Let us first qualitatively describe the behaviour of the mrr [7]. Scanning the [ p ,  g]- 
plane, one has that, fixing an arbitrary grow probability and starting with a small immunity, 
increments of g causes the fire density of the steady state to decrease until the fire becomes 
irreversibly extinguished at a certain critical point at coordinates [ p c ,  gc). The set of critical 
points defines a critical curve g&). For g 2 g , ( p ) ,  the final state of the system is a healthy 
forest without fire. So, in the L = 00 limit, the critical curve g c ( p )  divides the { p ,  g]-plane 
into two regions: a steady state with fire fronts for g < g&) (i.e. the supercritical region) 
and a unique absorbing state with all sites occupied by green trees for g 2 g&) (i.e. the 
subcritical region). 

It should be stressed that for finite L,  the steady state is metastable because, due 
to fluctuations of the stochastic system, there is always a finite probability of the fire 
becoming irreversibly extinguished, This probability increases when approaching the critical 
curve and, consequently, it is not possible to obtain reliable data, by means of numerical 
simulations, in order to determine critical exponents. Also. the continuous transition 
between the stationary regime and the absorbing state is of second order, e.g. dominated by 
fluctuations, so a mean-field treatment is not adequate. These shortcomings can be avoided 
by evaluating critical exponents related to the dynamic critical behaviour of the system. For 
this purpose, one starts, at t = 0, with a small fire at the centre of the lattice otherwise filled 
by green trees. i.e. a configuration very close to the absorbing state. Then, the evolution of 
the fire is monitored and the following quantities are computed: 

(i)  the survival probability P ( t ) ,  i.e. the probability that the fire is still ignited at time t ;  
(ii) the average number of burning trees N ( t ) ;  and 
(iii) the average mean-square distance I?’(?) over which the fire has spread. 
Notice that N ( t )  is averaged over all samples, including those in which the fire 

has already been extinguished, while R2(r) is only averaged over samples which have 
burning trees. Averages are taking over 5 x IO3 samples, and runs are performed up to 
5 x lo2 < t < lo3. Simulations are performed in two dimensions and the lattice size 
is selected large enough, usuallly L = 256 or 512, in order to avoid the fire reaching the 
boundaries. Using this procedure, one can ensure that the data is free of undesired finite-size 
boundary effects. Close to the critical curve. the following scaling laws should hold 1121: 

P ( t )  Q: t-’Q?(D(A,, Az)t””I] ( 1 )  

where A I  = Ig-g,[, A2 = Ip-pcI and ct = (’D(A1, A2)]-”lt give the temporal correlations 
close to both g, and pc ,  V I ,  is the correlation length exponent (time direction) and 6 is a 
critical exponent. Furthermore, 

N(f) cx t‘p[*D(Ai 1 A Z P l I  (2) 

RZ(r)  cx r z W { D ( A t ,  A2)t”“‘) (3) 

and 

where both q and L are critical exponents. In the absorbing state, the correlations are short 
ranged and m e  therefore expects PO) and N ( t )  to decay exponentially. This can only 
happen if 

p(x, y ,  t )  a (D@, y)t]-“”J exp(-(D(x, y)t)”’) for x 0, y > 0 and t -+ w. 

t Notice lhat V(A1, Ai)  b the dislance between the point of coordinates U. p) and the critical point (ps, 8,) 
at the critical cuwe, which may differ from thc simple Euclidean distance (AT t A$)‘/*. The same holds for 
r(A1. A?) in equalion (6). 
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Therefore, one obtains, from equation (2), 

N ( r )  a {D(AI, Ad)-'"nexp(-(D(At, A,)]"lr) f + CO. (4) 

At criticality, one expects that log-log plots of P(t), N(r)  and R2(r)  would give straight 
lines, while upward and downward deviations would occur even slightly off-criticality. This 
behaviour would allow a precise determination of the critical points and critical exponenk, 
as, for example, shown in figure 1. Table 1 summarizes the critical points and critical 
exponents obtained along the critical curve g c ( p )  using the method described above. The 
obtained exponents are in excellent agreement with those evaluated for directed percolation 
(DP) in (2+1) dimensions and the monomer4mer catalytic model in 2 dimensions, as 
shown in table 1. This result strongly supports the Jannsen conjecture [ 191 that a continuous 
transition into an absorbing state characterized by a scalar order parameter may belong to 
the universality class of Reggeon field theory, or equivalently DP. 
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Figure 1. Log-log plots of N ( r )  against f for p = 
O.lO20 and varying g: g = 0.5000 (supercritical) 
(o), g = 0.5003 (critical) (0) and 6 = 0.5005 
(subcritical) (V). 

Table 1. Critical points and critical exponents for the mrr. Errors in the critical points and 
stalktical errors in the exponents are the last digit. DP = direcmd percolation in (2+1) dimensions. 
DMM dimer-monomer model JS defined in [14]. 

PC s c  s 'I z "I1 B Reference 

mrr 0.1020 0.5003 0.459 0.212 1.141 1.296 0.595" PW 
mrr 0.5000 0.5614 0.461 0.211 1.110 1.285 0.592O PW 
mrr 1.0000 0.5762 0.458 0.219 1.135 1.281 0.589' PW 
DP - - 0.460 0.214 1.134 1.286 0.590" [I31 
DMM - - 0.452 0.224 1.139 - o m b  r15i 

Exponents determined using the scaling relation ,# =SUN. 
Tnken from [IS]. 

In order to gain fgther insight into the spreading behaviour of the fire, we have 
evaluated the fractal dimension DF of the set of sites which has been ignited at least 
once. DF is evaluated only (and just) when the fire arrives at the edge of the lattice, i.e. 
after fire percolation. "he average value for the three critical points listed in table 1 is 
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Figure Z (a) Ln-linear plot of N ( t )  against t according to equation (4), obtained by keeping 
p = pc = i.0 mnstnnnf (A2 = 0) and varying 8: 6 = 05800 (T), g = 0.5850 (V) and 
fi = 0,5900 (a). A is evaluated from the asymptotic slopes of the curves. (b)  Log-log plots of 
A against A obtained by keeping p = pE = 1.0 constant (AI = 0) and varying g(A1 = Ag) 
(o), and keeping 1: = gE = 0,5003 constant ( A I  = 0) and w i n g  P(AZ = A p )  (V). From the 
slopes of Ulese curves. the exponent$ YII listed in table I are obtained. 

DF 2 1.903~ 0.01. Since DF < d = 2. it follows that the spreading process is not compact 
and only a fractal set of the forest becomes ignited. Furthermore, the agreement between 
DF and the fractal dimension of incipient percolation clusters, i.e. D F  = 91/48 E 1.899 
[l,  21, strongly suggests that this fractal set has standard percolating-like properties. 

It should be noted that, for p = 0, the FFMIT behaves differently than in the p -P 0 
limit. In fact, for p + 0. one has that the absorbing state is unique, i.e. the lattice is 
fully covered by trees. On the contrary, for p = 0, since trees can no longer grow, the 
fire always spreads until it becomes irreversibly extinguished. At the critical point, the 
fire spreads over the whole lattice for the first time. So, the absorbing state involves two 
different types of site: trees and empty sites; therefore it is non-unique. This behaviour 
hinders the spreading study already described because, in the absorbing state, an incipient 
new fire will only spread over a finite distance. However, one can investigate the spreading 
of a small fire embedded in an already green lattice, at t = 0. Power-law behaviour of 
equations ( l t ( 3 )  are found at g, = 0.4655 * 0.0005. and the corresponding exponents are 
q E 0.44 f 0.02, S 2 0.14 f 0.01 and L S 1.70 i 0.02, which, as expected, depart from 
the universality class of DP. Also, one has DF E 1.80 & 0.02, i.e. smaller than Dbw but 
high enough to discard any possible relationship with the dimension of the backbone of the 
percolation cluster, given by Ds E 1.62 -+ 0.02 [ I ,  21. 

The validity of equation (4) has to be treated in the subcritical regime, i.e. within the 
absorbing state with all sites occupied by green trees (g > g c ( p c ) ) .  In fact, the decay 
constant (A = e;’), governing the long-time behaviour of N ( t )  in equation (4), behaves 
according to 

A = cTt = (’D(A1, A,))”r (5 )  

so, knowing {pc ,  gel, one can determine vu. Figure 2(a) shows In-linear plots of N ( t )  
against t, where the predicted exponential decay is verified. From the slopes of these 
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curves, h can be determined and subsequent log-log plots of h against A (figure 2(b)) 
allow us to evaluate V I , ,  as listed in table 1. The obtained exponents fully agree with the 
best estimate of q for DP. 

Figure 3. Log-log plots of prL!l’ against 
AL’IV according to equation 0): L = 256 (0). 
L = 128 (A) and L = 64 (O),  The upper 
curve is obtained by keeping p = pE = 0,1020 
constant (A2 = 0) and varying p(Al = Ag). 
while the lower curve is obtained by varying 
both p and g wifh AI  = A2 = A, pc = 0.1020 
and g, = 0.5003. 

As in standard second-order transitions, continuous irreversible phase fmnsitions can 
also be studied using finite-size scaling theory. At criticality, the correlation length & 
(space direction) diverges according to 

6 a lr(A1, A d - ” ’  At,  AI + 0 (6) 

where VL is the correlation-length exponent in the space direction [18]. Furthermore, the 
natural order parameter is the fire density (pr), which at criticality takes the following scaling 
form: 

where f is a suitable scaling funciton and ,8 is the order-parameter critical exponent. The 
exponents p and WL, necessary to test the scaling ansatz of equation (7), can be determined 
using scaling relations between already calculated exponents. In fact, the best available 
values of ,6 are, for example, p % 0.590 [I31 (obtained through the scaling relation p = q S  
1211) and f l  Z 0.578 (obtained by means of a direct measurement ([20] and references 
therein)). Using the scaling relation p = V I I S  [12], excellent agreement with these figures is 
obtained for the FFMIT (see table 1). Furthermore, an improved estimate of the correlation- 
length exponent is given by UL Z 0.729 [13]. Using the scaling relation [I21 z = 2 u ~ J q  
and the values listed in table I ,  one gets UL Z 0..739, UL 1 0.713 and VL E 0.727 
for the FFMIT. So, figure 3 shows excellent data collapsing in log-log plots of p ~ L f l l ” ~  
against AL’/”l for lattices of different size and data taken in the supercritical region (i.e. 
the stationary state). One set of data (the upper curve in figure 3) is obtained keeping p 
constant (A, = 0, p. = 1.0) and varying A1 = g - g,, with g, = 0.5762, i.e. vertical 
approach to the critical line g,(pc). The slopes of the straight lines obtained by least-square 
fits of the data are p Z 0.62 f 0.03 ( L  = 256) and p E 0.62 4~ 0.03 (L = 128). The 
second set of data (lower curve in figure 3) is obtained by ‘obliquely’ approaching the 
critical line, i.e. keeping A1 = A2 = A with pc = 0.1020 and g, = 0.5003. In this case, 
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the slopes of the straight lines close to the critical point give p 1 0.58 i 0.02 ( L  = 256) 
and ,9 1 0.63 rt 0.03 (L = 128). These exponents are in agreement, within error bars, 
with the already mentioned best available values of p ,  however, systematic deviations are 
observed, probably due to metastibilities of the system and corrections to scaling, which are 
neglected. Collapsing data are poorer in the lower cuwe of figure 3 ,  presumably due to a 
systematic deviation from the 'Euclidean' distance between ( p ,  g) and [ p c ,  gc] and the true 
distance given by r ( A l ,  Az), which becomes more evident for larger A-values. 

In conclusion, a detailed study of the critical, subcritical and supercritical behaviour of 
the FFMIT allows us to conclude that it belongs to the same universality class as Reggeon 
field theory. This result supports the early conjecture [19] that continuous transitions into 
an absorbing state may belong to the same universality class. Consequently, the FFMIT 
and some other problems emerging from (apparently) unrelated branches of science, such 
as particle physics and catalysis, can be understood by means of a unified description. 
I expect that these results will stimulate further work in order to search for connections 
between Reggeon field theory and self-organized criticality. 

This work was supported by the Consejo Nacional de Investigaciones Cientificas y 
Tbcnicas (CONICET) de la Repliblica Argentina. The Alexander von Humboldt 
Foundation (Germany), the Volkswagen Foundation (Germany) and the Fundaci6n 
Antorchas (Argentina) are greatly acknowledged for the provision of valuable equipment. 
Stimulating discussions with H Mwin are also appreciated. 
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